Aniline reacts with mixed acid (conc. HNO₃ and conc. H₂SO₄) at 288 K to give P (51%),Q (47%) and R (2%). The major product(s) of the following sequence is (are) (4) NaNO₂, HCl/273-278 K (5) EtOH, Δ (1) Sn/HCl (2) Br₂/H₂O (excess) (3) NaNO₂, HCl/273-278 K $(4) H_3PO_2$ Major product(s) (2018 Adv.) $\xrightarrow{\text{Conc. HNO}_3+} P + Q + R$ Given, Aniline Conc. H₂SO₄ (51%) Then P, Q and R will be (iv) NaNO₂, HCl/273-278 K (v) EtOH, $\tilde{\Delta}$ NH_2 -CH₃ HN- NO_2 Ac_2O Pyridine (R) -CH₃COOH N₂Cl NO_2 NO_2 NaNO₂/HCl **EtOH** 273-278K (Diazotisation) Br Br CH₃COOH Major product HN- Br NH₂ \mathbf{Br} H₃O⁺ (Hydrolysis) NO₂ NO_2 (S)Now from S to major products its given. (i) Sn/HCl (ii) Br₂/H₂O (Excess) (iii) NaNO2, HCl/273-278K (iv) H₃PO₂ 1, 3, 4, 5-tetrabromobenzene Hence, only (d) is the correct answer.